lunes, 4 de abril de 2016

GUNG HO - RESUMEN

Gung Ho 
Este vídeo se trata de como trabajar en equipo de una manera positiva en la cual nos indicaba diferentes aspectos como: El espíritu de la ardilla que se trata de que nuestro trabajo que debe tener un fin y que valga la pena realizar, el segundo aspecto que se tomo en cuenta fue el Método del Castor que consistía que nadie es líder de nadie todos trabajan para obtener un mismo objetivo, y el ultimo aspecto que se trato fue el Don del Ganso consistía en estimular a las personas por el buen desempeño en su trabajo realizado. Esto hacia que mejore la convivencia y el trabajo con eso todos aportaban para sacar adelante a su empresa y no solo trabajar por obligación si no porque les gustas su trabajo y porque asi su trabajo es mas placentero de realizar y tienes la satisfacción de que haces tu trabajo bien. esto nos deja una gran enseñanza de como trabajar en equipo para así llegar al éxito
 

miércoles, 23 de marzo de 2016

PERÍMETRO Y ÁREA DE DE UN TRIANGULO, POLÍGONOS REGULARES Y FIGURAS GEOMÉTRICAS

Perímetro y Área de un Triangulo 
Perímetro de un triángulo
El perímetro de un triángulo es igual a la suma de sus tres lados

Triángulo Equilátero        Triángulo Isósceles     Triángulo Escaleno
           fórmulas                                      fórmulas                           fórmulas
       diagonales de un cuadrado                                  Triángulo isósceles                            Triángulo escaleno
Área de un triángulo
El área de un triángulo es igual a base por altura partido por 2.

La altura es la recta perpendicular trazada desde un vértice al lado opuesto (o
 su prolongación).

                 dibujo                                       fórmulas


        

Perímetro y Área de Polígonos Regulares 
Un polígono regular es el que tiene sus ángulos iguales y sus lados iguales.
Los vértices de un polígono regular están circunscritos en una circunferencia

                                               polígono regular inscrito

Elementos de un polígono regular

                                  pentágono

Centro

Punto interior que equidista de cada vértice

Radio

Es el segmento que va del centro a cada vértice.

Apotema

Distancia del centro al punto medio de un lado.

Perímetro de un polígono regular


El perímetro es igual al número de lados por la longitud del lado.
          P = n · l

Área de un polígono regular




                             dibujo                       dibujo

fórmulas

fórmulas


fórmulas

                          

Perímetro y Área de Figuras Geométricas
        

martes, 15 de marzo de 2016

SUMA DE VECTORES, RESTA DE VECTORES Y MULTIPLICACIÓN DE VECTORES

Suma de Vectores 


Para sumar dos vectores libres vector y vector se escogen como representantes dos vectores tales que el extremo de uno coincida con el origen del otro vector.





Regla del paralelogramo

Se toman como representantes dos vectores con el origen en común, se trazan rectas paralelas a los vectores obteniéndose un paralelogramo cuya diagonal coincide con la suma de los vectores.
Para sumar dos vectores se suman sus respectivas componentes.
          suma
              suma

Propiedades de la suma de vectores

1 Asociativa
u + (v + w ) = (u + v ) + w
2 Conmutativa
u + v = v + u
3 Elemento neutro
u + 0 = u
4 Elemento opuesto
u + (− u) = 0
            

Resta de Vectores 
Para restar dos vectores libres vector y vector se suma vector con el opuesto de vector.
Las componentes del vector resta se obtienen restando las componentes de los vectores.
resta
resta
Ejemplo:
operaciones
operaciones
operaciones
El producto de un número k por un vector vector es otro vector:
1 De igual dirección que el vector vector.
2 Del mismo sentido que el vector vector si k es positivo.
3 De sentido contrario del vector vector si k es negativo.
4 De módulo proiducto
                    
Las componentes del vector resultante se obtienen multiplicando por K las componentes del vector.
Producto
Producto
Ejemplo:
operaciones
operaciones
operaciones
Propiedades del producto de un número por un vector
1 Asociativa
k · (k' · u ) = (k · k') · u
2 Distributiva respecto a la suma de vectores
k · ( u + v ) = k · u + k · v
3 Distributiva respecto a los escalares
(k + k') · u = k · u + k' · u
4 Elemento neutro
1 · u = u
           

Multiplicación de Vectores 

Cuando dos vectores A y B son multiplicados el resultado puede ser un escalar o un vector dependiendo de como son multiplicados.  Pues hay dos tipos de multiplicación:

Producto Escalar o producto punto: 
A•B

Producto vectorial o producto cruz:
AxB

Tres vectores, A, B, C pueden resultar en
Triple producto escalar:
A•(BxC)

O triple producto vectorial:
Ax(BxC)
PRODUCTO PUNTO:
El producto punto de dos vectores A y B escrito como A•B es definido geométricamente como el producto de sus magnitudes y el coseno del angulo entre ellos, el resultado es un escalar.
A•B=AB cos t
en donde t es el angulo menor que existe entre AyB

Además, si A=(Ax,Ay,Az)    y     B=(Bx,By,Bz)

entonces:
A•B=AxBx+AyBy+AzBz

es decir el producto punto se obtiene multiplicando A y B componente a componente.
Si el producto punto es cero, los vectores A y B son ortogonales (el angulo entre ellos es de 90 grados)
LEYES DEL PRODUCTO PUNTO:
El producto punto obedece las siguientes leyes:
Propiedad conmutativa:
Propiedad asociativa:

Propiedades para los vectores unitarios(recordar que estos son perpendiculares entre sí)

Ejemplos:

Los vectores A(2,4,1)  y B(5,3,8) se se multiplican usando el producto punto nos dan:

A•B= 2x5+4x3+1x8=10+12+8=30

el Vector A multiplicado por la constante k=3:

kA=3(2,4,1)=(6,12,3)